Citrate as a siderophore in Bradyrhizobium japonicum
نویسندگان
چکیده
منابع مشابه
Positive control of ferric siderophore receptor gene expression by the Irr protein in Bradyrhizobium japonicum.
Ferric siderophore receptors are components of high-affinity iron-chelate transport systems in gram-negative bacteria. The genes encoding these receptors are generally regulated by repression. Here, we show that the ferrichrome receptor gene bll4920 and four additional putative ferric siderophore receptor genes in Bradyrhizobium japonicum are positively controlled by the regulatory protein Irr,...
متن کاملThiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum.
Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in...
متن کاملChemotaxis of Bradyrhizobium japonicum to soybean exudates.
The chemotactic response of Bradyrhizobium japonicum toward soybean seed and root exudates was examined. Assays using various isoflavones and fractionated exudate indicated that isoflavones are not the principal attractants in exudates. Likewise, induction of nod genes with isoflavones or seed exudate before assay did not enhance chemotaxis. Screening of numerous compounds revealed that only di...
متن کاملA link between arabinose utilization and oxalotrophy in Bradyrhizobium japonicum.
Rhizobia have a versatile catabolism that allows them to compete successfully with other microorganisms for nutrients in the soil and in the rhizosphere of their respective host plants. In this study, Bradyrhizobium japonicum USDA 110 was found to be able to utilize oxalate as the sole carbon source. A proteome analysis of cells grown in minimal medium containing arabinose suggested that oxalat...
متن کاملA dominant-negative fur mutation in Bradyrhizobium japonicum.
In many bacteria, the ferric uptake regulator (Fur) protein plays a central role in the regulation of iron uptake genes. Because iron figures prominently in the agriculturally important symbiosis between soybean and its nitrogen-fixing endosymbiont Bradyrhizobium japonicum, we wanted to assess the role of Fur in the interaction. We identified a fur mutant by selecting for manganese resistance. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Bacteriology
سال: 1990
ISSN: 0021-9193,1098-5530
DOI: 10.1128/jb.172.6.3298-3303.1990